Álcool polivinílico (PVA)

Lar

Álcool polivinílico (PVA)

  • Como o PVA modificado melhora o desempenho em materiais de membrana de alto desempenho?
    Oct 11, 2025
    A tecnologia de materiais de membrana desempenha um papel fundamental na proteção ambiental, energia, biomedicina e outros campos. Álcool polivinílico (PVA) tornou-se um alvo importante da pesquisa de materiais de membrana devido à sua excelente solubilidade em água, propriedades de formação de filme e biocompatibilidade. No entanto, devido à alta concentração de grupos hidroxila em suas cadeias moleculares, o PVA incha ou se dissolve facilmente em ambientes de alta umidade, afetando sua estabilidade em aplicações complexas. Para superar essas limitações, pesquisas sobre Álcool polivinílico modificado tem se intensificado nos últimos anos. Por meio de reticulação química, mistura e incorporação de cargas inorgânicas, a resistência à água, as propriedades mecânicas e a estabilidade química de Filme de álcool polivinílico (filme de PVA) foram significativamente aprimoradas. As membranas de PVA modificadas têm ampla aplicação no tratamento de água, células de combustível, separação de gases e outras áreas. O surgimento de tecnologias de modificação ecológicas e ecologicamente corretas conferiu às membranas de PVA maior potencial para aplicações biodegradáveis ​​e ecologicamente corretas. Ao otimizar os processos de produção e expandir as estratégias de modificação funcional, as membranas de PVA desempenharão um papel mais significativo na área de materiais de membrana de alto desempenho. 1. Métodos de modificação com álcool polivinílico1.1 Reticulação QuímicaO álcool polivinílico (PVA) é um polímero altamente polar. Devido ao grande número de grupos hidroxila em sua estrutura, ele forma facilmente ligações de hidrogênio com moléculas de água, causando seu inchaço ou até mesmo sua dissolução em ambientes úmidos. Isso limita significativamente sua estabilidade em certas aplicações. A reticulação química é um método eficaz. Ao introduzir reticulações entre as cadeias moleculares de PVA, uma rede tridimensional estável é formada, reduzindo assim sua solubilidade em água e melhorando sua resistência à água e estabilidade térmica. A reticulação normalmente envolve a introdução de ligações covalentes entre as moléculas de PVA, tornando as cadeias poliméricas menos dispersíveis em água. Agentes de reticulação comuns incluem aldeídos (como glutaraldeído), epóxidos (como epicloridrina) e poliácidos (como ácido cítrico e anidrido maleico). Diferentes agentes de reticulação afetam o padrão de reticulação e as propriedades do polímero modificado. Por exemplo, quando o glutaraldeído encontra os grupos hidroxila do PVA em um ambiente ácido, eles criam uma estrutura reticulada sólida. Além disso, o anidrido maleico pode unir seções de PVA por esterificação, o que realmente ajuda o PVA a resistir à água. Como esses filmes de PVA reticulados possuem ligações mais fortes entre as moléculas, eles podem suportar mais calor, como evidenciado por sua temperatura de transição vítrea (Tg) e temperatura de decomposição térmica (Td) mais elevadas. 1.2 Modificação de misturaA modificação da mistura é outro método importante para melhorar o desempenho do filme de PVA. Ao misturá-lo com outros polímeros, as propriedades mecânicas, a resistência à água e a estabilidade química do PVA podem ser otimizadas. Devido à natureza inerentemente hidrofílica do PVA, a mistura direta com polímeros hidrofóbicos pode apresentar problemas de compatibilidade. Portanto, é importante selecionar materiais de mistura apropriados e otimizar o processo de mistura. Por exemplo, quando misturado com polivinil butiral (PVB), a hidrofobicidade do PVB permite que os filmes de PVA mantenham boa estabilidade morfológica mesmo em ambientes de alta umidade. Além disso, a alta temperatura de transição vítrea do PVB melhora a resistência ao calor dos filmes misturados. A mistura com fluoreto de polivinilideno (PVDF) aumenta significativamente a hidrofobicidade dos filmes de PVA. Além disso, a excelente resistência química do PVDF permite que os filmes misturados permaneçam estáveis ​​mesmo em ambientes químicos complexos. O PVA também pode ser misturado com polietersulfona (PES) e poliacrilonitrila (PAN) para aumentar a permeabilidade seletiva da membrana, tornando-a mais amplamente aplicável em membranas de separação de gases e purificação de água. 2. Aplicação de membranas modificadas com PVA em materiais de membrana de alto desempenho2.1 Membranas de Tratamento de ÁguaO desenvolvimento da tecnologia de membranas para tratamento de água é crucial para lidar com a escassez de recursos hídricos e melhorar a qualidade e a segurança da água. As membranas de PVA funcionam muito bem como filmes e se adaptam bem ao tecido vivo, podendo ser utilizadas em todos os tipos de processos de separação por membrana, como ultrafiltração, nanofiltração e osmose reversa. No entanto, como o PVA adora água e se dissolve nela, ele pode se decompor com o tempo. Isso torna a membrana mais fraca e menos durável. É por isso que a mudança nas membranas de PVA se tornou um grande foco na pesquisa sobre tratamento de água. A reticulação química é uma tecnologia essencial para melhorar a resistência à água das membranas de PVA. Agentes de reticulação (como glutaraldeído e anidrido maleico) formam ligações químicas estáveis ​​entre as cadeias moleculares de PVA, mantendo a morfologia estável da membrana em ambientes aquosos e prolongando sua vida útil. Além disso, a introdução de cargas inorgânicas também é um meio importante de melhorar a resistência à hidrólise e a resistência mecânica das membranas de PVA. A adição de nanossílica (SiO₂) e nanoalumina (Al₂O₃) pode criar uma mistura forte no material da membrana. Isso torna a membrana mais resistente à degradação pela água e aumenta sua resistência. Assim, ela continua funcionando bem mesmo sob alta pressão. Além disso, a mistura de PVA com outros polímeros, como polietersulfona (PES) e fluoreto de polivinilideno (PVDF), torna a membrana mais resistente à água e menos propensa a incrustações. Isso significa que ela dura mais e mantém sua vazão, mesmo com acúmulo de sujeira. 2.2 Membranas de troca de prótons para células de combustívelAs células de combustível são dispositivos de conversão de energia limpos e eficientes, e as membranas de troca de prótons, como seu componente principal, determinam seu desempenho e vida útil. O PVA, devido às suas excelentes propriedades de formação de filme e processabilidade, é um candidato promissor para membranas de troca de prótons. No entanto, sua baixa condutividade de prótons em seu estado bruto dificulta o atendimento aos requisitos de alta eficiência das células de combustível, necessitando de modificações para aumentar a condutividade de prótons. A modificação por sulfonação é um dos principais métodos para melhorar a condutividade de prótons das membranas de PVA. Para aumentar a eficiência da absorção de água pelas membranas e ajudar os prótons a se moverem melhor, adicionamos ácido sulfônico à cadeia de PVA. Isso cria canais de água contínuos. Misturar os dois também pode resolver o problema. Se você misturar PVA com SPS e SPEEK, eles formam uma rede que ajuda na troca de prótons e torna a membrana mais resistente. Mas o uso de membranas de PVA em DMFCs tem seus problemas. O metanol pode vazar, desperdiçando combustível e piorando a situação. Para corrigir isso, cientistas adicionaram elementos como sílica sulfonada e nanopartículas de zircônia às membranas de PVA. Eles também usam camadas para bloquear a passagem do metanol pela membrana e reduzir vazamentos. 3. Tendências e desafios de desenvolvimento3.1 Desenvolvimento de Tecnologias de Modificação Verdes e Ecologicamente CorretasCom regulamentações ambientais cada vez mais rigorosas e a crescente adoção de conceitos de desenvolvimento sustentável, tecnologias de modificação ecológicas e ecologicamente corretas para filmes de PVA tornaram-se um foco fundamental de pesquisa. A pesquisa sobre filmes de PVA biodegradáveis ​​fez progressos significativos nos últimos anos. Ao misturar com polímeros naturais (como quitosana, amido e celulose) ou introduzir nanoenchimentos biodegradáveis ​​(como hidroxiapatita e nanocelulose de base biológica), a biodegradabilidade dos filmes de PVA pode ser significativamente melhorada, tornando-os mais facilmente decompostos no ambiente natural e reduzindo a poluição do ecossistema. Além disso, para reduzir o impacto ambiental e humano de produtos químicos tóxicos usados ​​em processos tradicionais de modificação por reticulação, pesquisadores começaram a desenvolver agentes de reticulação não tóxicos e processos de modificação mais ecologicamente corretos. Isso inclui reticulação química usando reticuladores naturais, como ácido cítrico e quitosana, e métodos de modificação física, como luz ultravioleta e tratamento de plasma, alcançando reticulação livre de poluição. Essas tecnologias de modificação verde não apenas aumentam a compatibilidade ambiental dos filmes de PVA, mas também aumentam seu valor de aplicação em embalagens de alimentos, biomedicina e outros campos, tornando-as uma direção fundamental para o desenvolvimento futuro de materiais de membrana polimérica. 3.2 Desafios e Soluções para Aplicação IndustrialEmbora os filmes de PVA modificados apresentem amplas perspectivas de aplicação no campo de materiais de membrana de alto desempenho, eles ainda enfrentam inúmeros desafios em sua industrialização. Altos custos de produção são um grande gargalo, particularmente para filmes de PVA que envolvem nanoenchimentos ou modificações especiais. Matérias-primas caras e processos de preparação complexos limitam a produção em larga escala. A otimização do processo ainda precisa ser aprimorada. Atualmente, alguns métodos de modificação sofrem com alto consumo de energia e longos ciclos de produção, dificultando a viabilidade econômica e a exequibilidade da produção industrial. Para abordar essas questões, os esforços futuros se concentrarão no desenvolvimento de processos de preparação eficientes e de baixo custo, como a adoção de técnicas de síntese aquosa ecologicamente corretas para melhorar a eficiência da produção, ao mesmo tempo em que otimizam o sistema de mistura para aumentar a estabilidade do desempenho dos filmes de PVA. Além disso, as futuras direções de desenvolvimento para filmes de PVA de alto desempenho se concentrarão em melhorar a durabilidade, reduzir o consumo de energia na produção e expandir a funcionalidade inteligente. Por exemplo, desenvolver filmes de PVA inteligentes que possam responder a estímulos externos (como mudanças de temperatura e pH) para atender a uma gama mais ampla de necessidades industriais e biomédicas. 4. ConclusãoO álcool polivinílico (PVA), como um polímero de alto desempenho, apresenta amplas perspectivas de aplicação no campo de materiais de membrana. Filmes de PVA podem ser tornados mais fortes e resistentes aos elementos usando métodos como reticulação química, comodificação e adição de cargas inorgânicas. Isso os torna adequados para coisas como tratamento de água e células de combustível. Além disso, a nova tecnologia de modificação verde tornou os filmes de PVA mais fáceis de quebrar e menos tóxicos. Isso significa que eles podem ser importantes em proteção ambiental e usos médicos. No futuro, as aplicações industriais ainda enfrentarão desafios em custos de produção e otimização de processos. Mais melhorias na eficiência econômica e viabilidade das tecnologias de modificação são necessárias para promover a ampla aplicação de filmes de PVA no campo de materiais de membrana de alto desempenho e fornecer soluções de materiais de membrana de maior qualidade para o desenvolvimento sustentável. Site: www.elephchem.comWhatsapp: (+)86 13851435272E-mail: admin@elephchem.com
    CONSULTE MAIS INFORMAÇÃO
  • Preparação de filmes modificados com PVA-VAE por mistura de soluções
    Oct 09, 2025
    Agentes formadores de filme são adjuvantes importantes em revestimentos de sementes com pesticidas e são ingredientes funcionais essenciais em revestimentos de sementes. A inclusão de agentes formadores de filme permite que os revestimentos de sementes formem uma película na superfície da semente, distinguindo-os de outras formulações, como pós secos, pós dispersíveis, líquidos e emulsões. A principal função do agente formador de filme em revestimentos de sementes é aderir o ingrediente ativo à superfície da semente e formar uma película uniforme e lisa. Os agentes formadores de filme precisam ser resistentes à água para resistir a condições úmidas, como arrozais, mas também precisam deixar passar um pouco de água para que as sementes possam crescer. Também é bom se eles puderem absorver um pouco de água do solo, o que ajuda as sementes a crescerem quando está seco. A maioria dos polímeros é boa em uma dessas coisas, mas não em todas. Por exemplo, é difícil encontrar algo que seja à prova d'água e permita a passagem de água. Atualmente, os revestimentos de sementes geralmente usam apenas um polímero, por isso é difícil obter todas essas propriedades de uma só vez. Este é um dos principais problemas para produzir melhores revestimentos de sementes para campos de arroz. Álcool polivinílico (PVA), com sua excelente capacidade de formação de filme, intumescimento e permeabilidade à água, é atualmente o agente formador de filme mais utilizado em revestimentos de sementes. No entanto, sua baixa resistência à água o torna suscetível à erosão hídrica após o revestimento, tornando-o inadequado para uso isolado em arrozais ou em áreas com alta umidade. Emulsão VAE (Emulsão de Copolímero de Acetato de Vinila-Etileno) Apresenta forte resistência à água, mas os filmes de VAE apenas incham em água, não se dissolvem e são impermeáveis ​​à água. Claramente, o VAE sozinho também não é adequado como agente de revestimento de sementes. Para resolver esses problemas, utilizamos um método de mistura de soluções para preparar uma série de filmes misturados usando PVA e VAE em proporções variadas, na esperança de melhorar a resistência à água de Álcool polivinílico film (PVA ffilme). 1. Observação microscópica do BleSistema ndA Figura 3-a mostra que as partículas coloidais de PVA apresentam comportamento micelar distinto, enquanto as partículas coloidais de VAE apresentam formas esféricas relativamente regulares, com tamanhos de partícula variando de 700 a 900 nm e contornos pouco nítidos (Figura 3-b), consistente com relatos da literatura. Após a mistura, os contornos das partículas coloidais de PVA e VAE exibem claramente uma estrutura núcleo-casca (Figura 3-c), indicando que a ligação de hidrogênio dentro do sistema de mistura altera a densidade eletrônica ao redor das partículas. Além disso, as partículas de cada fase são distribuídas uniformemente dentro do sistema de mistura, sem formação aparente de interface, indicando boa compatibilidade. 2. Resistência à água e permeabilidade do sistema de misturaOs resultados dos testes de permeabilidade à água do sistema de mistura estão listados na Tabela 1. Após a adição de PVA, a permeabilidade à água do VAE foi significativamente melhorada. As permeabilidades à água de vp10, vp20, vp30 e vp40 foram ideais, atendendo aos requisitos de germinação de sementes e, em geral, consistentes com os resultados do teste de germinação de sementes. Quando observamos quanto tempo levou para a água passar, descobrimos que, à medida que o teor de VAE aumentava, demorava mais para a água começar a permear: 0,2 horas (vp0), 0,25 horas (vp10), 0,5 horas (vp20), 0,75 horas (vp30), 1,2 horas (vp40), 2,5 horas (vp50) e mais de 6 horas (vp60-100). Com exceção do vp0, todos os grupos duraram as 24 horas inteiras sem se dissolver, o que mostra que a adição de VAE realmente tornou o material mais resistente à água. As normas nacionais GB 11175-89 e GB 15330-94 testam a resistência à água e a permeabilidade verificando o grau de dilatação do filme. Esses testes não conseguem capturar completamente a permeabilidade à água, a erosão hídrica e a subsequente dissolução dos filmes de revestimento de sementes utilizados neste teste. A avaliação visual desses indicadores também é difícil de determinar com precisão. O "método do tubo de vidro em forma de L" proposto neste artigo mede a permeabilidade à água e a resistência à água de filmes de látex. Em princípio, este método mede diretamente a permeabilidade à água, a dissolução em água e a solubilidade em água. Instrumentos de medição precisos, como amostradores automáticos e pipetas, são utilizados para o controle do indicador. A avaliação visual dos indicadores de "permeabilidade e dissolução em água" e as medições de tempo são facilmente determinadas. O procedimento experimental é simples e pode refletir com precisão o desempenho real da membrana. 3. Efeito de filmes modificados na germinação de sementesTestes de germinação de sementes de arroz (ver Tabela 2) mostraram que filmes de mistura com menos de 30% de VAE não alteraram significativamente a germinação das sementes, portanto, devem funcionar bem para revesti-las. No entanto, se o VAE for superior a 70%, as sementes não germinaram bem. Nenhuma das outras amostras germinou o suficiente após 7 dias para atender ao padrão. A caracterização estrutural dos filmes de mistura revelou boa compatibilidade intermolecular entre PVA e VAE após a mistura da solução. As micelas na solução de PVA foram abertas e nenhuma interface entre as duas fases foi observada, demonstrando a viabilidade do uso de VAE para modificar o PVA. O desempenho dos filmes de mistura de PVA/VAE nas proporções de massa de 80:20 e 70:30 foi adequado para aplicações de revestimento de sementes de arroz. Comparado com filmes de PVA sozinhos, a introdução de VAE melhorou significativamente a resistência à água dos filmes de mistura, mantendo uma permeabilidade à água adequada e não tendo efeito significativo na germinação das sementes. O método de modificação de misturas de PVA com emulsão de VAE é viável para aplicação no campo de agentes formadores de filme de agentes de revestimento de sementes de pesticidas. Site: www.elephchem.comWhatsapp: (+)86 13851435272E-mail: admin@elephchem.com
    CONSULTE MAIS INFORMAÇÃO
  • Avanços na pesquisa em membranas de álcool polivinílico modificado
    Sep 26, 2025
    Álcool polivinílico (PVA) é um material popular de membrana polimérica que absorve água. É amplamente utilizado em embalagens de alimentos, pervaporação e tratamento de águas residuais, pois é quimicamente estável, resiste a ácidos e bases, forma filmes facilmente e é seguro de usar. Seus muitos grupos hidroxila lhe conferem boas características de absorção de água e antiincrustantes. Ainda assim, esses mesmos grupos causam dois problemas principais: não é muito resistente e não se mantém bem na água. Isso significa que pode inchar ou até mesmo se dissolver em água, o que limita suas possibilidades de uso. Para resolver esses problemas, os cientistas tentaram alterar as membranas de PVA misturando-as com outros materiais, formando nanocompósitos, aquecendo-as, reticulando-as quimicamente ou usando uma mistura dessas maneiras. 1. Modificação física: aumento da função e da forçaMétodos de modificação física, como misturas e nanocompósitos, são populares porque são simples e fáceis de ampliar para produção industrial. 1.1 Modificação de misturaCombinar elementos para transformar filmes de PVA envolve misturar materiais que funcionam bem e se misturam bem com o PVA para criar os filmes. A quitosana (CS), por exemplo, é frequentemente usada. A melhor parte é que ela confere aos filmes de PVA boas propriedades de eliminação de germes, interrompendo ou até mesmo eliminando Escherichia coli e Staphylococcus aureus. Isso ajuda Filme de álcool polivinílico (filme de PVA) ser usado em curativos hemostáticos, por exemplo. No entanto, a adição de materiais de mistura pode, às vezes, enfraquecer as propriedades mecânicas originais do filme de PVA, tornando o equilíbrio entre funcionalidade e resistência mecânica um desafio fundamental nessa abordagem.1.2 Modificação de nanocompósitosA modificação de nanocompósitos utiliza os efeitos únicos de superfície e interface de cargas nanométricas (como nanofolhas, nanobastões e nanotubos) para influenciar a estrutura interna de filmes de PVA em nível molecular. Mesmo com uma pequena quantidade de carga, pode-se melhorar significativamente a resistência mecânica e a resistência à água dos filmes de PVA, além de expandir sua condutividade elétrica, condutividade térmica e propriedades antimicrobianas.Nanomateriais biopoliméricos: A adição de nanocelulose (CNC/CNF) e nanolignina (LNA) pode melhorar as propriedades mecânicas dos filmes de PVA, pois são biocompatíveis e apresentam boas propriedades mecânicas. Foi demonstrado que a ligação de hidrogênio intermolecular entre esses materiais aumenta a resistência à tração e a flexibilidade dos filmes de PVA. A nanolignina, em especial, desempenha um excelente papel em tornar os filmes de PVA mais fortes e resistentes ao rasgo. Também os torna mais eficazes no bloqueio do vapor de água e da luz UV, o que os torna mais úteis em embalagens de alimentos.Nanomateriais à base de carbono: Grafeno, óxido de grafeno (GO) e nanotubos de carbono (NTCs) possuem resistência mecânica excepcionalmente alta e excelente condutividade elétrica e térmica. O GO pode formar múltiplas ligações de hidrogênio com o PVA, aumentando tanto a resistência mecânica do filme quanto a resistência à água. Por exemplo, a adição de albumina de soro bovino a nanopartículas de SiO₂ (criando SiO2@BSA) pode mais que dobrar a resistência à tração e o módulo de elasticidade de filmes de PVA em comparação com o uso de filmes de PVA puro. Nanomateriais à base de silício: nanopartículas de sílica (SiO2NPs) e montmorilonita (MMT) podem efetivamente melhorar as propriedades mecânicas e a estabilidade térmica de filmes de PVA. Por exemplo, NPs de SiO₂ modificados com albumina de soro bovino (SiO2@BSA) podem aumentar a resistência à tração e o módulo de elasticidade de filmes de PVA para mais que o dobro dos filmes puros.Nanopartículas de metais e óxidos metálicos: Nanopartículas de prata (AgNPs) conferem excelente condutividade elétrica e propriedades antibacterianas aos filmes de PVA; nanopartículas de dióxido de titânio (TiO2NPs) aumentam significativamente a atividade fotocatalítica dos filmes de PVA ao reagir com grupos hidroxila nas cadeias moleculares de PVA, mostrando grande potencial para tratamento de águas residuais. 2. Abordagens Químicas e Termodinâmicas: Construindo uma Estrutura Estável 2.1 Modificação de reticulação químicaA modificação por reticulação química utiliza os numerosos grupos hidroxila nas cadeias laterais do PVA para reagir com reticulantes (como ácidos dibásicos/polibásicos ou anidridos) para formar uma rede de reticulação de ligação química estável (ligação éster) entre as cadeias poliméricas. Este método pode melhorar de forma mais consistente as propriedades mecânicas e a resistência à água do filme de PVA, reduzindo significativamente sua solubilidade em água e o inchaço causado pela água. Por exemplo, o uso de ácido glutárico como reticulante pode melhorar simultaneamente a resistência à tração e o alongamento na ruptura do filme de PVA.2.2 Modificação do tratamento térmicoO tratamento térmico controla o movimento das cadeias moleculares de PVA ajustando a temperatura e o tempo, otimizando a estrutura interna e aumentando a cristalinidade.Recozimento: Realizado acima da temperatura de transição vítrea, ele aumenta a cristalinidade do filme de PVA, aumentando assim sua resistência mecânica e resistência à água.Ciclismo de congelamento e descongelamento: Os núcleos dos cristais são formados em baixas temperaturas, e o descongelamento promove o crescimento dos cristais. Os microcristais resultantes servem como pontos físicos de reticulação para as cadeias poliméricas, melhorando significativamente a resistência mecânica e a resistência à água do filme. Após vários ciclos, a resistência à tração do filme de PVA pode atingir até 250 MPa. 3. Modificação sinérgica: rumo a um futuro de alto desempenhoUm único método de modificação frequentemente falha em atender totalmente aos complexos requisitos de desempenho do filme de PVA em aplicações práticas. É difícil aumentar a resistência e a tenacidade ao mesmo tempo. Portanto, uma abordagem fundamental é usar dois nanoenchimentos ou métodos que funcionem bem juntos. Isso ajuda a criar filmes de PVA com bom desempenho em todas as áreas. Por exemplo, combinar reticulação química com nanocompósitos é atualmente uma das estratégias mais promissoras. Pesquisas demonstraram que a modificação sinérgica de filmes de PVA usando ácido succínico (SuA) como reticulante e nanofissores de celulose bacteriana (BCNW) como enchimento de reforço melhora significativamente a resistência à tração e a resistência à água, compensando efetivamente as deficiências dos métodos de modificação única. 4. Conclusão e PerspectivasProgressos notáveis ​​foram alcançados na modificação de filmes de álcool polivinílico (PVA). Por meio da aplicação combinada de diversas estratégias, incluindo tratamentos físicos, químicos e térmicos, as propriedades mecânicas, a resistência à água e a multifuncionalidade dos filmes de PVA foram significativamente aprimoradas. Isso impulsionou significativamente a aplicação prática de membranas de PVA modificadas em áreas como tratamento de água, embalagens de alimentos, dispositivos optoeletrônicos e células de combustível.Olhando para o futuro, a pesquisa sobre membranas de PVA modificadas (como PVA 728F modificado) se concentrará nos seguintes aspectos:Modificação sinérgica: Explorar ainda mais o efeito sinérgico ideal da reticulação química e dos nanocompósitos para resolver o conflito entre o fluxo de permeação e a seletividade dos materiais de membrana e alcançar a otimização sinérgica de múltiplas propriedades.Expansão funcional: Planejamos continuar trabalhando em filmes de PVA, dando a eles novos recursos como autocura e respostas inteligentes, para que possam ser usados ​​em situações mais complicadas.Com base nas vantagens naturais do PVA e no uso de processos avançados de modificação, os filmes de álcool polivinílico provavelmente se tornarão ainda mais amplamente utilizados no campo de materiais poliméricos de alto desempenho. Site: www.elephchem.comWhatsapp: (+)86 13851435272E-mail: admin@elephchem.com
    CONSULTE MAIS INFORMAÇÃO
  • Quais são as vantagens do álcool polivinílico modificado em relação ao PVA padrão?
    Sep 23, 2025
    Álcool polivinílico (PVA), um polímero sintético solúvel em água, é amplamente utilizado em têxteis, fabricação de papel, construção civil, revestimentos e outras áreas devido às suas excelentes propriedades filmogênicas, adesivas, emulsionáveis ​​e biodegradáveis. No entanto, o PVA padrão pode apresentar limitações de desempenho (como resistência à água, flexibilidade e redispersibilidade) em certas aplicações específicas. Para superar esses desafios, os cientistas desenvolveram uma série de PVAs modificados, introduzindo vários grupos funcionais ou modificando o processo de polimerização. Comparados ao PVA padrão, estes PVA modificado apresentam vantagens significativas de desempenho em muitos aspectos.1. Melhor resistência à água e aderênciaA abundância de grupos hidroxila (-OH) na cadeia molecular padrão do PVA o torna extremamente hidrofílico. No entanto, isso também significa que ele é propenso a intumescimento e até mesmo à dissolução em ambientes quentes e úmidos, resultando em redução da resistência de ligação. O PVA modificado, por meio da introdução de grupos funcionais hidrofóbicos (como grupos acetil e siloxano) ou por meio de reações de reticulação (como reticulação com ácido bórico e reticulação com aldeído), pode reduzir efetivamente seu intumescimento em água, melhorando significativamente sua resistência à água.Por exemplo, em argamassas secas para construção, o PVA modificado usado em adesivos para azulejos pode formar uma ligação mais estável e resistente à umidade, garantindo que os azulejos não caiam devido à erosão causada pela umidade durante o uso a longo prazo. Essas modificações também aumentam a coesão entre as cadeias moleculares do PVA, fortalecendo sua adesão a diversos substratos (como celulose e pós inorgânicos), conferindo assim maior coesão e aderência ao produto final. 2. Redispersibilidade e compatibilidade otimizadasCertas aplicações, como a produção de pós poliméricos redispersíveis (PDRs), impõem requisitos rigorosos quanto à redispersibilidade do polímero. O PVA padrão, usado como colóide protetor, pode facilmente causar a aglomeração de partículas da emulsão durante o processo de secagem por pulverização, afetando as propriedades finais do PDR.PVA modificado, como o PVA parcialmente alcoolizado com alto grau de polimerização, produzido por meio de processos de polimerização especializados, ou o PVA contendo segmentos hidrofílicos/hidrofóbicos específicos, pode estabilizar sistemas de emulsão com mais eficácia. A camada protetora que formam após a secagem permite uma redispersão rápida e uniforme após a readição de água, mesmo após armazenamento prolongado, restaurando o estado original da emulsão. Essa redispersibilidade otimizada é crucial para garantir a trabalhabilidade de produtos como argamassas secas e massas em pó.Além disso, a introdução de grupos funcionais específicos no PVA modificado pode melhorar sua compatibilidade com certos aditivos (como éteres de celulose e éteres de amido), reduzindo as interações do sistema e a floculação, alcançando assim efeitos sinérgicos na formulação e alcançando um desempenho do produto mais estável e eficiente. 3. Maior potencial de aplicação e desempenho personalizávelEmbora o PVA padrão tenha propriedades relativamente fixas, a personalização do PVA modificado abre uma gama mais ampla de aplicações. Por meio de modificações químicas precisas, o PVA pode ser dotado de uma variedade de propriedades personalizadas para atender aos rigorosos requisitos de indústrias específicas.Por exemplo, o PVA modificado com silano pode melhorar significativamente sua adesão e resistência alcalina em materiais cimentícios; o PVA modificado com acetato de vinila oferece maior flexibilidade e temperaturas de formação de filme mais baixas; e certos PVAs biomodificados podem encontrar novas aplicações na área biomédica. Essa capacidade de ser "funcionalizado" para atender a necessidades específicas eleva o PVA modificado de uma simples matéria-prima básica a um aditivo de alto desempenho capaz de solucionar desafios técnicos específicos. Em resumo, embora o PVA padrão continue indispensável em muitos campos, o PVA modificado, com suas vantagens significativas em resistência à água, força adesiva, redispersibilidade e personalização, deu um salto de "uso geral" para "especializado" e de "passivo" para "inteligente". Seja expandindo os limites de desempenho de aplicações tradicionais ou sendo pioneiro em tecnologias de ponta, como biomedicina, engenharia ambiental e materiais inteligentes, o PVA modificado (como PVOH 552) demonstra imenso potencial e é, sem dúvida, uma direção fundamental para o desenvolvimento futuro de materiais poliméricos. Site: www.elephchem.comWhatsapp: (+)86 13851435272E-mail: admin@elephchem.com
    CONSULTE MAIS INFORMAÇÃO
  • Como o PVA melhora adesivos, revestimentos e filmes?
    Sep 11, 2025
    Na indústria atual, novos materiais estão melhorando o funcionamento dos produtos. Álcool polivinílico (PVA) é um deles. É um tipo especial de polímero sintético que está se tornando muito importante para a fabricação de colas, revestimentos e filmes. O PVA é ótimo para formar filmes, unir objetos, dissolver-se em água e impedir a passagem de substâncias. Tudo isso torna os produtos melhores e mais competitivos. 1. PVA em Adesivos: A Pedra Fundamental de uma Adesão ForteO PVA se destaca por sua excelente capacidade de unir as peças. Sua estrutura molecular contém numerosos grupos hidroxila (-OH), que formam fortes ligações de hidrogênio com uma variedade de substratos, resultando em uma ligação segura. Como o PVA funciona em adesivos:Excelentes propriedades adesivas: os grupos hidroxila do PVA permitem que ele seja umedecido e grude em coisas como papel, madeira, tecido, couro e certos plásticos, criando uma ligação forte.Excelentes propriedades de formação de filme: Quando a solução de PVA seca, forma um filme contínuo, liso e muito flexível. Esse filme ajuda a cola a aderir melhor. Ele também distribui a tensão uniformemente na superfície, o que reduz os pontos de tensão e torna a ligação mais forte e duradoura.Excelente resistência coesiva: a ligação de hidrogênio entre as cadeias moleculares de PVA também confere alta resistência coesiva à camada adesiva, tornando a ligação menos suscetível à quebra quando submetida a forças externas.Adesivos Poliméricos Modificados: O PVA é frequentemente usado como modificador para adesivos poliméricos, como emulsões de acetato de polivinila (PVAc). A adição de PVA aumenta significativamente a viscosidade, a resistência coesiva, a adesão úmida e a aderência inicial dos adesivos à base de PVAc, além de melhorar suas propriedades de formação de filme.Aplicações típicas do produto:Papel e Embalagens: O PVA é um componente adesivo essencial na produção de produtos como papelão, caixas de papelão ondulado, envelopes e fitas. Sua cura rápida e alta resistência de colagem atendem às demandas de linhas de produção de alta velocidade.Madeira e Móveis: Na indústria de marcenaria, os adesivos à base de PVA são os preferidos por sua excelente adesão à madeira e custo relativamente baixo. Têxteis: O PVA pode ser usado como adesivo têxtil para a produção de tecidos não tecidos e laminação de roupas. 2. PVA em Revestimentos: Melhorando o Desempenho e a EstéticaO PVA também é amplamente utilizado em revestimentos. Ele não serve apenas como agente formador de filme, mas também como aditivo, melhorando significativamente o desempenho da aplicação do revestimento e o acabamento final do filme.Mecanismos de PVA em Revestimentos:Melhoria da adesão: semelhante ao seu papel nos adesivos, o PVA ajuda o revestimento a aderir melhor à superfície do substrato, reduzindo descamação e bolhas, e melhorando a durabilidade do revestimento.Melhorando o nivelamento e a uniformidade: as propriedades de formação de filme do PVA ajudam a criar um revestimento liso e uniforme. Em revestimentos de papel, o PVA atua como um carreador, ajudando a distribuir uniformemente pigmentos e branqueadores ópticos, melhorando o brilho e a capacidade de impressão do papel.Espessamento e Estabilização: Em revestimentos à base de água, o PVA atua como espessante, ajustando a viscosidade e facilitando a aplicação. Também atua como um coloide protetor, estabilizando as dispersões de pigmentos e prevenindo a sedimentação.Aprimoramento Óptico: Em revestimentos de papel ou têxteis, o PVA é um excelente carreador para branqueadores ópticos. Ele ajuda os agentes a se distribuírem mais uniformemente e a se fixarem à superfície, absorvendo eficazmente a luz UV e refletindo a luz branco-azulada, melhorando significativamente a brancura e o brilho do produto.Aplicações típicas do produto:Revestimento de papel: Álcool Polivinílico CCP BP-05 (CCP BP 05), uma forma parcialmente hidrolisada de PVA, apresenta propriedades hidrofílicas e hidrofóbicas, tornando-o ideal como componente em revestimentos de papel. Melhora a lisura, a printabilidade, a resistência à tinta e a resistência da superfície do papel. BP-05 é recomendado para revestimento de papel, indicando sua aplicação especializada nesta área.Revestimentos arquitetônicos: Em materiais de construção, como argamassa de cimento e placas de gesso, o PVA pode ser usado como aditivo para melhorar a flexibilidade, a resistência da ligação e a resistência a rachaduras.Revestimentos especiais: O PVA também pode ser usado para criar revestimentos de alto desempenho, como revestimentos de embalagens com excelentes propriedades de barreira, ou como tratamento de superfície para couro, tornando-o mais liso e fácil de imprimir. 3. PVA em Filmes: Um Modelo de VersatilidadeO filme PVA é muito útil devido à sua combinação especial de características. Pode ser usado em diversas áreas, especialmente em embalagens e itens descartados após o uso.Propriedades do filme PVA:Alta barreira: a película de PVA retém bem o oxigênio e odores. Isso a torna uma boa opção para manter seguros objetos que são facilmente trocados ou têm cheiros fortes.Solubilidade em água e biodegradabilidade: Uma das melhores vantagens do filme de PVA é que ele pode se dissolver em água. Além disso, ele pode se decompor sob certas condições, o que é benéfico para o meio ambiente. Isso ajuda a atender à crescente demanda por produtos ecologicamente corretos, o que lhe confere vantagens únicas em aplicações de filmes descartáveis ​​e solúveis em água.Solubilidade em água controlável: ao controlar o grau de polimerização e hidrólise do PVA, sua taxa de dissolução e temperatura na água podem ser ajustadas com precisão para atender às necessidades de diversas aplicações.Estabilidade química: o PVA apresenta excelente resistência a óleos, graxas e à maioria dos solventes orgânicos.Aplicações típicas do produto:Embalagem solúvel: Álcool Polivinílico Selvol 205 (Celvol 205), um PVA parcialmente hidrolisado com baixa viscosidade, tem aplicação principal nos setores de adesivos, fabricação de papel e têxtil. Sua baixa viscosidade pode torná-lo mais útil em alguns processos de filmes e revestimentos. Um uso comum envolve a criação de filmes para embalagens de produtos como detergentes para roupas e pastilhas para lavar louça. Basta colocar a embalagem inteira na água e ela se dissolverá. Isso facilita o processo e reduz o desperdício de plástico.Filme Agrícola: Filmes de PVA de liberação controlada podem ser usados ​​para encapsular pesticidas ou fertilizantes, liberando-os lentamente sob condições específicas para reduzir a poluição ambiental.Aplicações médicas: a biocompatibilidade e as propriedades controláveis ​​do PVA também oferecem aplicações potenciais na área médica, como veículos de administração de medicamentos e lentes de contato. 4. O Futuro do PVAO álcool polivinílico (PVA), com sua estrutura química e propriedades físicas únicas, desempenha um papel vital em três áreas principais: adesivos, revestimentos e filmes. Desde proporcionar forte adesão, aprimorar as propriedades decorativas e protetoras dos revestimentos até criar soluções de embalagem práticas e ecologicamente corretas, as aplicações do PVA estão em constante expansão e aprofundamento. Site: www.elephchem.comWhatsapp: (+)86 13851435272E-mail: admin@elephchem.com
    CONSULTE MAIS INFORMAÇÃO
  • Simulação e otimização de processos de recuperação de monômeros de acetato de vinila
    Aug 12, 2025
    Álcool polivinílico (PVA) é uma matéria-prima fundamental para a produção de vinilon e também é utilizada na produção de adesivos, emulsificantes e outros produtos. No processo de produção de PVA, a polimerização em solução é utilizada para garantir um grau estreito de distribuição da polimerização, baixa ramificação e boa cristalinidade. A taxa de polimerização do VAM é rigorosamente controlada em aproximadamente 60%. Devido ao controle da taxa de polimerização durante o processo de polimerização do VAM, aproximadamente 40% da Monômero de acetato de vinila (VAM) permanece não polimerizado e requer separação, recuperação e reutilização. Portanto, a pesquisa sobre o processo de recuperação de VAM é um componente crucial do processo de produção de PVA. Existe uma relação polímero-monômero entre Acetato de etileno vinila (EVA) e monômero de acetato de vinila (VAM). O monômero de acetato de vinila é uma das matérias-primas básicas para a fabricação do polímero etileno acetato de vinila. Este artigo utiliza o software de simulação química Aspen Plus para simular e otimizar o processo de recuperação de VAM. Estudamos como as configurações do processo na primeira, segunda e terceira torres de polimerização afetam a unidade de produção. Encontramos as melhores configurações para economizar água na extração e reduzir o consumo de energia. Esses parâmetros fornecem uma base teórica importante para o projeto e a operação da recuperação de VAM. 1 Processo de Recuperação de Monômero de Acetato de Vinila1.1 Processo de SimulaçãoEste processo inclui a primeira, a segunda e a terceira torres de polimerização no processo de recuperação do monômero de acetato de vinila. O diagrama de fluxo detalhado é mostrado na Figura 1. 1.2 Modelo Termodinâmico e Seleção de MódulosA unidade de recuperação de monômero de acetato de vinila da planta de álcool polivinílico processa principalmente um sistema polar composto por acetato de vinila, metanol, água, acetato de metila, acetona e acetaldeído, com separação líquido-líquido entre acetato de vinila e água. O equipamento principal da unidade de recuperação de monômero de acetato de vinila da planta de álcool polivinílico foi simulado utilizando o software Aspen Plus. O módulo RadFrac foi utilizado para a torre de destilação e o módulo Decanter para o separador de fases. 2 Resultados da SimulaçãoRealizamos uma simulação de processo na unidade de recuperação de monômero de acetato de vinila na planta de álcool polivinílico. A Tabela 3 mostra uma comparação dos resultados da simulação com os valores reais para a logística principal. Como mostrado na Tabela 3, os resultados da simulação estão em boa concordância com os valores reais, portanto, este modelo pode ser usado para otimizar ainda mais os parâmetros e o fluxo do processo. 3 Otimização de Parâmetros de Processo3.1 Determinação da quantidade de metanol de strippingA Torre de Polimerização 1 extrai o monômero de acetato de vinila (VAM) do fluxo remanescente após a polimerização. Ela utiliza vapor de metanol na parte inferior para aquecimento. A quantidade correta de metanol é importante para o bom funcionamento da torre. Este estudo analisa como diferentes quantidades de metanol afetam a fração mássica de PVA na parte inferior da torre e a fração mássica de VAM na parte superior, assumindo que a alimentação permanece a mesma e o projeto da torre é constante. Conforme mostrado na Figura 2, quando a capacidade térmica necessária para a separação na Torre de Polimerização 1 é satisfeita, o aumento da quantidade de metanol de stripping reduz a fração mássica de PVA na parte inferior e a fração mássica de VAM na parte superior. A quantidade de metanol de stripping tem uma relação linear com a fração mássica de PVA na parte inferior e a fração mássica de VAM na parte superior. 3.2 Otimização da Posição de Alimentação na Torre de Polimerização 2Na Torre de Polimerização 2, uma torre de destilação extrativa, os locais de entrada do solvente e da alimentação afetam significativamente o funcionamento da separação. Esta coluna utiliza destilação extrativa. Com base nas propriedades físicas do extratante e da alimentação mista, o extratante deve ser adicionado pela parte superior da coluna. A Figura 3 mostra como a posição da alimentação da mistura afeta a fração mássica de metanol na parte superior e a carga do refervedor na parte inferior, mantendo as demais configurações da simulação inalteradas. 3.3 Otimização da quantidade de água de extração na coluna de polimerização 2Na Coluna de Polimerização 2, a destilação extrativa é usada para separar o azeótropo de acetato de vinila e metanol. Ao adicionar água ao topo da coluna, o azeótropo é rompido, permitindo a separação das duas substâncias. A vazão da água de extração tem um grande impacto na eficiência da separação desses materiais pela Coluna de Polimerização 2. Com configurações de simulação consistentes, observei como a quantidade de água de extração afetava a fração mássica de metanol no topo e a carga do refervedor na base da coluna. Os resultados são mostrados na Figura 4. 3.4 Otimizando a taxa de refluxo na coluna de polimerização 3Na Coluna de Polimerização 3, a razão de refluxo é importante para separar o acetato de vinila de substâncias mais leves, como acetato de metila e traços de água. Isso melhora a qualidade do acetato de vinila obtido da corrente lateral. Mantivemos as configurações de simulação constantes e estudamos como a razão de refluxo afeta tanto a fração mássica de acetato de vinila da corrente lateral quanto a carga do refervedor. Os resultados do cálculo são mostrados na Figura 6. Manter a razão de refluxo da torre de polimerização em torno de 4 ajuda a garantir que o acetato de vinila da linha lateral atenda aos padrões de qualidade e mantenha a carga do refervedor baixa. 4. Conclusão(1) Utilizando o software AspenPlus, um modelo termodinâmico adequado é selecionado para simular todo o processo de recuperação do monômero de acetato de vinila da planta de álcool polivinílico. Os resultados da simulação estão em boa concordância com os valores reais e podem ser usados ​​para orientar o projeto do processo e a otimização da produção da planta.(2) Com base no estabelecimento de uma simulação de processo correta, a influência dos parâmetros de processo da torre de polimerização 1, torre de polimerização 2 e torre de polimerização 3 na planta é investigada, e os parâmetros de processo ideais são determinados. Quando o acetato de vinila atende aos padrões de separação necessários, podemos economizar água de extração e reduzir o consumo de energia. Site: www.elephchem.comWhatsapp: (+)86 13851435272E-mail: admin@elephchem.com
    CONSULTE MAIS INFORMAÇÃO
  • Estrutura de consumo global e tendências de desenvolvimento de Álcool Polivinílico (PVA)
    Dec 02, 2019
    A estrutura de consumo global de álcool polivinílico (PVA) é: os assistentes de polimerização representam cerca de 24%, o polivinil butiral (PVB) representa cerca de 15%, os adesivos representam cerca de 14%, a pasta têxtil representa cerca de 14% e a pasta de papel Materiais e os revestimentos representam cerca de 10% e outros 23%.   A estrutura de consumo de álcool polivinílico (PVA) na China é: assistentes de polimerização respondem por cerca de 38%, pastas de tecido respondem por cerca de 20%, adesivos respondem por cerca de 12%, fibras de vinilon respondem por cerca de 11%, pastas e revestimentos para fabricação de papel respondem por cerca de 8%%, os revestimentos arquitetônicos representam cerca de 5% e outros 6%. Auxiliares de polimerização, colagem de tecidos e adesivos são os principais mercados consumidores a jusante de álcool polivinílico.   No primeiro semestre de 2023, a oferta e a procura de produtos PVA da China apresentavam um equilíbrio fraco e os preços situavam-se em níveis baixos. As vantagens da variedade China PVA no apoio a uma participação de mercado estável. Com a introdução de novas tecnologias, novos processos e novos produtos, a expansão contínua de novos campos de aplicação e a substituição gradual de produtos importados, novas oportunidades de desenvolvimento foram trazidas para a indústria nacional de álcool polivinílico e vinilon. Contudo, à medida que várias empresas aumentam os seus esforços de exportação e adoptam uma concorrência feroz no segmento inferior, e com o ajustamento da estrutura industrial da China, o aumento dos salários e de outros custos, e os elevados requisitos de protecção ambiental, algumas indústrias a jusante, como a indústria têxtil de mão-de-obra intensiva, indústria, mudaram-se para o Sudeste Asiático, fazendo com que a dinâmica de crescimento da demanda interna desacelerou, o consumo estrangeiro aumentou e as exportações aumentaram. Após mais de dez anos de integração e otimização competitiva, a indústria apresenta um novo padrão de capacidade de produção otimizada, maior concentração, variedades de mercado estáveis, crescimento lento da procura de mercado, elevadas barreiras técnicas, concorrência moderada e desenvolvimento impulsionado pela inovação, atingindo um novo equilíbrio entre oferta e procura. Desenvolva um novo formato de negócios benigno.   Com o rápido desenvolvimento das indústrias a jusante de PVA, como filme óptico de PVA, filme de PVB, aditivos de polimerização, melhoria do solo, adesivos de papel, adesivos cerâmicos, proteção ambiental, medicamentos e cosméticos, a demanda por produtos especiais de PVA é muito forte, e Anhui O especial Os produtos PVA de empresas líderes do setor representadas pela ElephChem desenvolveram-se rapidamente e aumentaram seus esforços de pesquisa e desenvolvimento em fibra PVA, resina PVB, filme PVB, filme óptico PVA, pó de borracha redispersível e outros produtos. Variedades especiais de PVA e A tecnologia de produção de novos produtos materiais a jusante está se tornando cada vez mais madura, preenchendo muitas lacunas no país. Novos produtos de PVA estão sendo gradualmente colocados no mercado e sua participação no mercado também aumenta constantemente. As variedades comuns basicamente alcançaram a substituição de importações e a estrutura de consumo a jusante da indústria nacional de PVA foi ainda mais expandida.
    CONSULTE MAIS INFORMAÇÃO
  • Aplicação de álcool polivinílico (PVA) e uso de álcool polivinílico (PVA)
    Nov 26, 2019
    Álcool polivinílico ElephChem (PVA) é um polímero versátil com uma ampla gama de aplicações devido à sua combinação única de propriedades, incluindo solubilidade em água, capacidade de formação de filme e adesão. Aqui estão algumas aplicações comuns de Álcool Polivinílico ElephChem:   1.Adesivos: ElephChem PVA é amplamente utilizado na formulação de adesivos à base de água. Ele fornece excelente adesão a diversas superfícies, tornando-o adequado para aplicações em marcenaria, colagem de papel e embalagens.   2. Indústria de papel: ElephChem PVA é usado como agente de colagem de superfície na indústria de papel. Melhora as propriedades da superfície do papel, como suavidade e capacidade de impressão.   3. Indústria Têxtil: Na indústria têxtil, ElephChem PVA é usado como agente de colagem para adicionar resistência e flexibilidade às fibras durante o processo de tecelagem. Também é empregado na produção de fios de urdidura.   4. Polimerização em emulsão: ElephChem PVA é usado em processos de polimerização em emulsão para estabilizar e controlar o tamanho das partículas de polímeros de látex. Serve como colóide protetor na síntese de dispersões de látex.   5. Filmes de embalagem: ElephChem PVA é utilizado na produção de filmes de embalagem solúveis em água. Esses filmes são ecologicamente corretos e encontram aplicação em embalagens monodose para detergentes, agroquímicos e outros produtos.   6. Dimensionamento de têxteis: ElephChem PVA é utilizado como agente de colagem para fios de urdidura na indústria têxtil. Confere resistência e lubrificação durante o processo de tecelagem.   7. Indústria da Construção: ElephChem PVA é incorporado em formulações à base de cimento como modificador de cimento. Melhora a aderência e trabalhabilidade de materiais cimentícios, como argamassa e concreto.   8.Agentes de Liberação: ElephChem PVA é utilizado como agente desmoldante na produção de objetos moldados, como componentes de borracha e plástico. Impede a adesão do produto moldado à superfície do molde.   9. Aplicações Médicas: ElephChem PVA é usado na área médica para aplicações como a produção de curativos à base de hidrogel e sistemas de administração controlada de medicamentos.   10. Filmes Fotográficos: ElephChem PVA é usado como colóide protetor na fabricação de emulsões fotográficas. Contribui para a estabilidade e dispersibilidade dos cristais de haleto de prata.   11.Revestimentos e Tintas: ElephChem PVA é empregado como aglutinante em revestimentos e tintas à base de água. Melhora a formação, adesão e flexibilidade do filme.   12. Filmes solúveis em água: ElephChem PVA é usado para produzir filmes solúveis em água para diversas aplicações, incluindo embalagens de detergentes, corantes e agroquímicos. Esses filmes se dissolvem em água, sem deixar resíduos.   Essas aplicações mostram a versatilidade de Álcool polivinílico em diversos setores. O grau específico e as características de ElephChem PVA pode ser adaptado para atender aos requisitos de cada aplicação, tornando-o um polímero valioso no setor manufatureiro.
    CONSULTE MAIS INFORMAÇÃO
  • Aplicação e Preparação de Álcool Polivinílico
    Nov 20, 2019
    O álcool polivinílico (PVA) é um polímero altamente solúvel em água feito de acetato de vinila por meio de solução de álcool polimérico. Sua propriedade está entre plásticos e produtos de borracha. Os produtos PVA podem ser divididos em duas categorias: fibra e não fibra. Existem duas rotas principais de síntese, uma é usar o etileno como matéria-prima para produzir acetato de vinil e depois para produzir álcool polivinílico. Outro é à base de acetileno (dividido em carboneto de acetileno e gás acetileno) para a preparação de acetato de vinila e álcool polivinílico. Atualmente, no exterior utiliza principalmente matéria-prima de etileno para produzir álcool polivinílico, mas grande parte dos produtores chineses utiliza matéria-prima de acetileno para produzir álcool polivinílico. O álcool polivinílico tem melhor viscosidade forte e flexibilidade do filme de pele, e suave, resistência oleosa, resistência a solventes, proteção coloidal e resistência a gases, e resistente ao desgaste e à prova de água por processamento especial. O álcool polivinílico pode ser usado em têxteis e alimentos, medicamentos e construção, processamento de madeira, fabricação de papel, impressão e agricultura.  
    CONSULTE MAIS INFORMAÇÃO
  • Método de armazenamento de álcool polivinílico (PVA)
    Nov 16, 2019
    Álcool polivinílico ElephChem (PVA) é um polímero sintético solúvel em água com uma ampla gama de aplicações, inclusive como componente em adesivos, revestimentos e como agente formador de filme. O armazenamento adequado do álcool polivinílico é importante para manter sua qualidade e usabilidade. Aqui estão algumas diretrizes gerais para o armazenamento de Álcool polivinílico ElephChem (PVA):1.Temperatura e umidade:Armazene o álcool polivinílico em local fresco e seco. A exposição a altas temperaturas e umidade pode levar a alterações nas propriedades físicas do material, como aumento da absorção de umidade.Evite armazenar em áreas propensas a flutuações de temperatura. 2. Recipientes selados:Mantenha o álcool polivinílico em recipientes fechados para evitar a absorção de umidade. O PVA é solúvel em água e a exposição à umidade pode afetar seu desempenho.Use recipientes ou sacos herméticos para proteger o material das condições ambientais.   3.Proteção contra luz:Loja Álcool polivinílico ElephChem (PVA) longe da luz solar direta e de outras fontes de luz UV. A exposição prolongada à luz pode causar degradação do polímero. 4. Evite contaminação:Manter Álcool polivinílico ElephChem (PVA) longe de contaminantes como poeira, sujeira e produtos químicos que podem afetar suas propriedades.Use utensílios e ferramentas limpos ao manusear e transferir o PVA para evitar contaminação.   5. Precauções de manuseio:Siga os procedimentos adequados de manuseio para evitar a introdução de impurezas durante o armazenamento e uso do álcool polivinílico.Use equipamentos de proteção individual adequados, como luvas e óculos de segurança, ao manusear o material.   6. Primeiro a entrar, primeiro a sair (FIFO):Siga um sistema FIFO para garantir que lotes mais antigos de Álcool polivinílico ElephChem (PVA) são usados primeiro. Isso ajuda a evitar que o material fique armazenado por longos períodos, reduzindo o risco de degradação.   7.Verifique se há alterações:Inspecione periodicamente os armazenados Álcool polivinílico ElephChem quanto a quaisquer sinais de descoloração, aglomeração ou alterações na textura. Caso seja observada alguma anormalidade, é fundamental investigar a causa e avaliar a adequação do material para uso. Inspecione periodicamente ElephChem PVA quanto a quaisquer sinais de descoloração, aglomeração ou alterações na textura. Caso seja observada alguma anormalidade, é fundamental investigar a causa e avaliar a adequação do material para uso.Consulte sempre o fabricante específico-ElephChemsiga as diretrizes e recomendações do para o armazenamento do tipo ou tipo específico de álcool polivinílico que você está usando. Formulações diferentes podem ter requisitos de armazenamento variados. Práticas adequadas de armazenamento contribuem para a longevidade e eficácia do álcool polivinílico em diversas aplicações.  
    CONSULTE MAIS INFORMAÇÃO
  • Visão geral do álcool polivinílico (PVA)
    Nov 02, 2019
    Álcool polivinílico (PVA) é um polímero altamente solúvel em água produzido pela polimerização e hidrólise do acetato de vinila (VAC). Apresenta excelente estabilidade química e possui propriedades como bom isolamento, capacidade de formação de filme, desempenho de barreira a gases, solubilidade em água, adesão, química interfacial, resistência a solventes e estabilidade térmica.   Produtos ElephChem PVA podem ser classificados com base em diferentes graus de polimerização: baixo grau de polimerização (DP < 1000), grau médio de polimerização (1000 < PD < 2000) e alto grau de polimerização (DP > 2000).   ElephChem PVA os produtos também podem ser categorizados de acordo com diferentes graus de hidrólise: baixa hidrólise (< 80), por exemplo PVA 2088, hidrólise parcial (79-89), tal como PVA2488, PVA 0588, hidrólise média (91-98) e hidrólise completa (98-99).
    CONSULTE MAIS INFORMAÇÃO
1 2
Um total de 2Páginas
Deixe um recado

Lar

Produtos

Whatsapp

Contate-nos